

INNOVATIVE WATER & ENVIRONMENTAL SOLUTIONS

COMPANY PROFILE

Contact

INNOVATIVE WATER & ENVIRONMENTAL SOLUTIONS

Propststrasse 8 10178 Berlin

+493047009410

🖌 info@i-wes.com

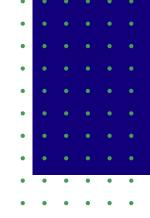

https://www.i-wes.com

TABLE OF CONTENT

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

- 1. Company Overview
- 2. Our Process
- 3. Company Values
- 4. Field of Expertise
- 5. Our Services
- 6. Organisation and Personnel
- 7. Projects

1. COMPANY OVERVIEW

About Us

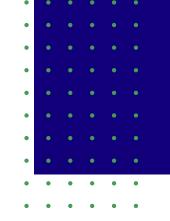
Innovative Water and Environmental Solutions (IWES), an international company based in Berlin, Germany, was founded in June 2019 and registered at the district court of Charlottenburg and finance office of Berlin. As a "Spin-Off" our commitment lies in company to GFZ Potsdam, with conducting scientific research robust practical applications to combat climate change and mitigate its negative impacts. IWES specializes in offering science-based advisory services and support for water and environmental projects.

Goals

IWES aims at using innovative methods, data, and tools to enhance our understanding of nature and address emerging challenges in the water and environmental sectors. We have a strong focus on utilizing remote sensing-based products as a data source and advanced Geographic Information System (GIS), complemented by proficiency in various programming languages solve complex to issues. Additionally, the company provides services aimed at developing new operationalized tools and methods to enhance environmental monitoring capabilities.

2. OUR PROCESS

Mission


Our mission is rooted in conducting cutting-edge scientific research, with a robust emphasis on practical implementation. We are dedicated to addressing the challenges posed by climate change and actively working towards the development of effective mitigation strategies.

Vision

Our vision is to lead the way in addressing the global challenge of climate change. We aim to pioneer scientific research, advancing our understanding of nature translating these insights and into solutions that practical make a meaningful impact on our environment. We envision a future where our innovative approaches and specialized expertise contribute significantly to creating a sustainable and resilient world.

We value the diverse and extensive expertise that each team member brings to IWES. We believe in the power of collaboration, where our collective knowledge and prowess contribute to addressing the complexities of water and environmental challenges.

2. Innovation and Continuous Learning


At IWES, we thrive on innovation. Committed to utilizing advanced methods, data, and tools, we stay at the forefront of water and environmental sciences. We foster a culture of continuous learning, encouraging our team to embrace new ideas and approaches.

Our commitment to combating climate change is at the core of our values. We actively engage in fields such as climate change impact assessments, water resource monitoring, and disaster risk reduction, aiming to be responsible stewards of our environment.

4. Client-Centric Solutions

We tailor our services to meet the diverse needs of our clients. Our focus is on providing impactful and clientcentric solutions through climate change impact assessments, model development, capacity building, disaster risk reduction, and expert advisory services.

5. Sustainable Solutions

Joining IWES means being part of a collective effort to create sustainable solutions for a better and more resilient future. We are dedicated to making a positive impact on our planet, and our values reflect a commitment to environmental sustainability and longterm success.

4. FIELD OF EXPERTISE

- Climate Impact Assessment on Water Resources
- **Disaster Risk Reduction (DRR)**
- **Capacity Development**
- **Water Security and Political Dialog**
- Impact of Water Availability on Agriculture Sector of Economy

Mountain Hydrology (Snow and Glaciers)

IWES boasts extensive expertise in mountain hydrology, with the COfounder, Abror Gafurov, notably creating a user-friendly MODSNOW tool for operational snow cover and snow depth monitoring, hydrological forecasting, and glacier monitoring satellite data and using modeling techniques. This tool is currently operational across all five Central Asian countries as well as South Asian countries such as Nepal and Pakistan, including their hydromet services, water organizations, and research institutes. Its application ensures an assessment of water availability in transboundary promoting balanced basins, and informed water distribution in the region.

In addition to cryosphere monitoring and hydrological forecasting, IWES brings valuable experience to glacier monitoring. For almost a decade, the co-founder of IWES has been actively engaged in glacier mass balance measurements through annual summer expeditions to selected glaciers in Central Asia.

The data collected during these expeditions (e.g. glacier shrinkage, accumulation, ablation) contributes to modeling studies of different projects.

Climate Impact Assessment on Water Resources

IWES utilizes complex hydrological models for climate change impact assessment on water resources. This involves hydrological simulations until the end of the 21st century for strategic applying IPCC CMIP5 river basins scenarios, climate and assessing climate impact on individual discharge components (e.g. snow, glacier, rainfall, groundwater).

Disaster Risk Reduction (DRR)

IWES has valuable experience in DRR, stemming from the founder's assignments in Central Asia for international organizations. The range of DRR services provided includes flood forecasting, debris flow, and landslides, to addressing mountain hazards associated with specific mass movements.

Water Security and Political Dialog

IWES is actively engaged in projects centered around water security and fostering political dialogue in different regions of the world. The objective is to incorporate scientific knowledge to encourage discussions and initiatives related to water security in the region.

Impact of Water Availability on Agriculture Sector of Economy

IWES implements projects assessing future water shortage impacts on economies, particularly in agricultural production, considering climate as well as anthropogenic impacts.

Capacity Development

IWES possesses extensive expertise in capacity building within the water and environmental sectors, derived both from past involvement in scientific projects and consultancydriven capacity building activities.

5. OUR SERVICES

Our range of services extends across hydrometeorology, climate impact studies, disaster risk reduction, and more, showcasing IWES's commitment to consultancy excellence. We take pride in delivering precise, innovative, and sustainable solutions that empower clients in navigating complex environmental challenges.

Consulting Services

- General field investigations
- Database development
- Modernisation and installation of
 hydrometeorological stations
- Climate impact studies
- Disaster Risk Reduction assessment studies
- Hydrological forecasting
- Snow cover monitoring using remote sensing data
- Processing of remote sensing products / satellite images
- Flood and drought forecasting using modelling tools
- Glacier monitoring / field
 expeditions
- Assessment of spatio-temporal changes in water availability on agricultural sector of economy

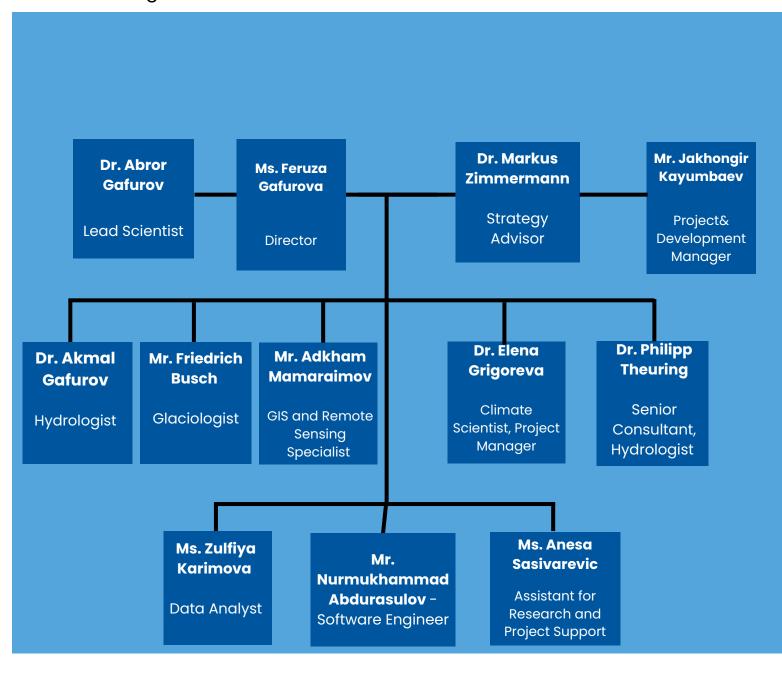
Capacity Building

- Geographic Information Systems (GIS)
- Remote Sensing
- R programming
- Data analysis
- Hydrological modeling
- Climate data processing and analysis (including bias correction and downscaling)

Services in Partnership with Bender Ingenieur-GmbH, Switzerland

- Hydraulic Engineering & Flood
 Protection
- Civil & Structural Engineering

Software Development


- Small task oriented
 programming routines
- Development of full software in the context of natural sciences

AI-Driven services

- AI-Driven Hydrological Forecasting
- Deep Learning for Remote Sensing Analytics
- AI-Based Disaster Risk
 Prediction & Early Warning
 Systems
- Machine Learning for Water Resource Optimization
- Big Data Analytics for Hydrometeorological Monitoring

6. ORGANISATION AND PERSONNEL

Guided by our co-founder and Lead Scientist, who possesses 15 years of experience as a natural scientist and international development cooperation consultant, IWES is dedicated to meaningful scientific research with practical applications. Our diverse team of professionals collaborates to enhance the company's capabilities across various disciplines, positioning IWES complex water and environmental effectively address to challenges.

General FbF feasibility study on mudflow scenarios in Kyrgyzstan, Tajikistan, and Uzbekistan

Client: German Red Cross

Description of Project

The project involved an in-depth study and analysis of mudflows in Central Asia, with a focus on the development of an Early Warning System (EWS) using the Forecast-based Financing (FbF) mechanism. This study was conducted to explore the feasibility of implementing Forecast-based Financing (FbF) for mudflow hazards in Tajikistan, Kyrgyzstan, and Uzbekistan.

Challenge

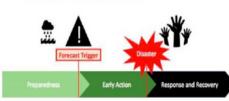
Mudflows are a severe natural hazard in Central Asia and pose significant challenges for the National Hydrometeorological Services (NHMS) Tajikistan, in Kyrgyzstan, and Uzbekistan. Mudflows hinder highquality forecasts due to limited meteorological data, data management capacity, and the absence of standardized modeling tools, leading to qualitative forecasting based on short-term rainfall predictions.

Solution

Mudflow hotspot areas were identified using historical data, DEMs, land use, soil information, along and with climate data and models such as MODSNOW to determine high-risk periods linked to snowmelt and rainfall.

Collaborating with local communities, NHMS, and Red Cross/Red Crescent societies, IWES sought input to improve information flow and mudflow warnings, emphasizing awareness and capacity-building initiatives.

Duration of assignment: 6 months



Recommendations for EAP's

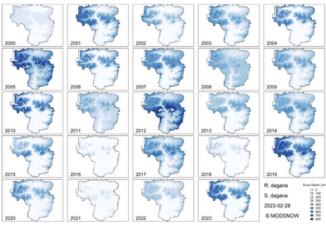
Creating guidelines for swift donorsponsored Early Action programs aiding communities before and after mudflow hazards.

FbF Strategy

Many humanitarian actions could be implemented before a disaster based on forecasts.

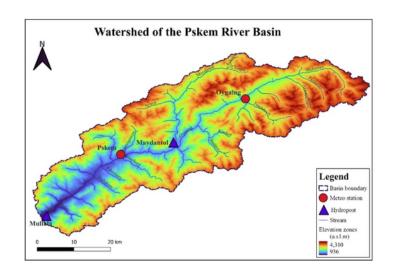
©

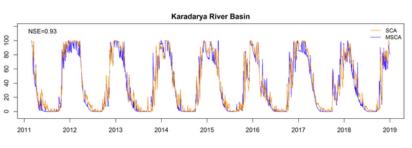
Description of Project


Client: World Bank

The consultant provided support in response to the need for a simplified and less data-intensive snowmelt approach. A strategic initiative was undertaken within the framework of the Central Asian Hydrometeorology Modernization Project (CAHMP) in 2020. During the assignment, the consultant provided crucial support in refining and testing the snowmelt approach in five carefully selected pilot river basins.

Challenge


In Central Asia, snow holds paramount hydrological importance as a component. The winter accumulation of snow in the Pamir and Tian Shan mountains a vital role in plays ensuring water availabilitv for hydropower reservoir refilling and agricultural production during the summer months. However, in situ monitoring data is very scarce.



Solution

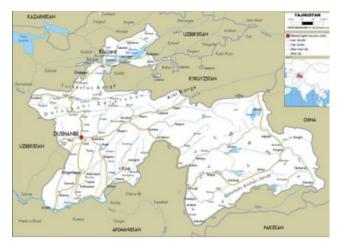
IWES has developed MODSNOW, a user-friendly tool widely applied in Central Asia for operational snow cover and snow depth monitoring, hydrological forecasting, and glacier monitoring. The tool involves applying the snowmelt module to the entire river basin, creating spatial layers of Snow Water Equivalent (SWE), snow depth, and daily snowmelt. Verification of SWE and snow depth results was conducted using observational data from permanent meteorological stations or snow surveys. Additionally, temperature and precipitation were interpolated based on station data to a 500m resolution grid for the study region. Historical meteorological data (temperature and precipitation) were utilized to calibrate region-specific snowmelt parameters.

Duration of assignment: 11 months

15

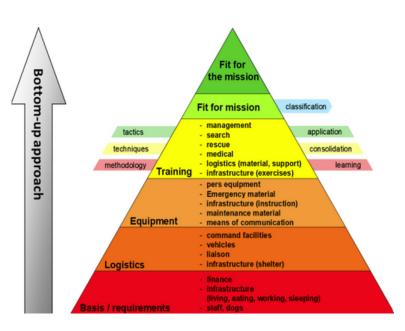
Assessment of Tajikistan disaster preparedness need

Client: World Bank


Duration of assignment: 10 months

Description of Project

The Consultant supported the World Bank in helping Tajikistan and specifically the Committee of Emergency Situation and Civil Defence (CoESCD) better target planned activities. The consultant assessed the status, developed a baseline, and identified needs for modernizing disaster communication and information technology systems and capacity building for emergency response.


Challenge

Tajikistan faces heightened disaster risk and climate vulnerability, evident in frequent flash floods, mudflows, rockfalls, and avalanches, imposing a substantial burden on communities. The country anticipates climate change-induced temperature rises exceeding the global average, leading to intensified extreme climate and disaster events.

Solution

Based on the findings of the project, the World Bank initiated the Preparedness and Resilience to Disasters Project ("PREPARED") to support Tajikistan in its efforts to build back better from the 2021 floods and enhance its disaster risk management (DRM) capacities. IWES, together with SwissTeamLeaders, visited the main and key facilities for Operational and Training purposes. IWES reviewed a Capacity Building Methodology, proven in global projects the last two decades over by governmental agencies (SDC, SHA, GIZ). The assessment utilized a bottom-up approach, evaluating current field conditions and identifying needs with appropriate priorities and urgency. This resulted in a comprehensive Plan of Action (PoA) with realistic, effective, and measurable goals.

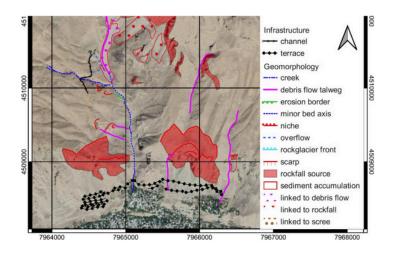
Guidelines for Natural/Multi-Hazard Structural Mitigation in High Mountainous Regions of South and Central Asia

Client: Aga Khan Agency for Habitat

Duration of assignment: 25 months

Description of Project

This project focused on preparation a guideline on safeguarding settlements, individual structures, and critical infrastructure elements from various natural hazards in High Mountainous Regions of South and Central Asia. The project included the identification of elements to be protected, such as entire settlements and individual infrastructure components (e.g., roads, bridges, irrigation channels). Critical facilities, including hospitals, schools, grain silos, water treatment facilities, warehouses, and essential administrative buildings, were carefully identified for special attention.


Challenge

mountainous regions, In where development and natural hazard risk management intricately are connected, the challenges of ensuring safety and sustainability are particularly complex. Settlements positioned on plluvial fans or flood plains, face periodic threats from debris flows, floods, or landslides for example. These processes pose significant risks. The management of risks from such natural hazards requires an integrated and systematic approach.

Solution

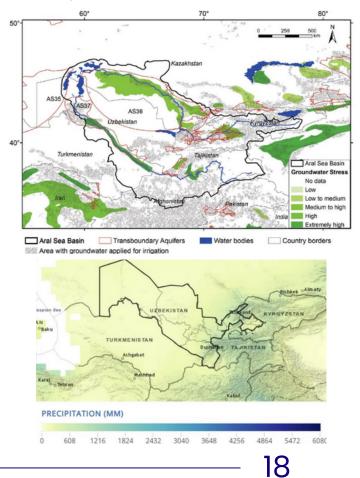
IWES, jointly with NDR Consulting and DSM Consulting (both Switzerland) focused on boosting resilience and mountain regions safetv in threatened by natural hazards. A systematic framework, Integrated (IRM), Risk Management was provided, which encompassed preassessment, risk assessment, evaluation, and mitigation strategies, both structural and non-structural. This approach ensured that projects not only address current risks but are also adaptable to future changes, thereby securing investments and safeguarding communities.

quidelines The serves as a comprehensive tool for planners and engineers working on development projects in hazard-prone areas, aiming to enhance the sustainability of investments, ensure safer environments, ultimately, and increase the overall resilience of communities in mountain regions.

Development of Sectoral and Regional Climate Change Adaptation Plans in Uzbekistan

Description of Project

The project prepared a National Adaptation Plan (NAP) for Uzbekistan, targeting the country's water management challenges in the Aral Sea Basin. It prioritized addressing reliance on transboundary rivers and heavy agricultural water usage. The plan aimed to boost adaptation capacity, identify vulnerabilities, and propose risk reduction and resilience enhancement strategies. It includes measures like adopting water-saving technology and optimizing hydropower for improved efficiency and safe water availability. Stakeholder collaboration, data analysis, and structured interviews guided its development, emphasizing cooperation across society for both structural and non-structural solutions.


Challenge

water Uzbekistan's sector is significantly challenged by climate variability and scarcity, impacted by dependency on transboundary water resources. The agriculture-dominated economy, consuming approximately of water 90% usage, is highly susceptible to the impacts of reduced water flows from glacial melt and changing precipitation patterns. The need to enhance policy, technology, and capacity to manage these shifts is urgent to secure water for irrigation, sustain economic stability, and protect ecosystem health.

To tackle these challenges, the National Adaptation Plan (NAP) for Uzbekistan was created by DEKONTA in partnership with international and local experts, including IWES, where a multifaceted strategy was proposed.

This encompassed promoting watertechnologies, enhancing saving digital monitoring, improving transboundary water cooperation, upgrading irrigation and systems. Capacity building and policy integration formed the backbone of this adaptive approach, aiming to build a resilient water management framework that can endure amidst the dynamic climate conditions.

